
 

Helping to bring 1940’s computer technology into the 21st century.
 

Introduction 
Tofu is a relay-switching circuit simulator. Electronic components and their connections are described in 
text files and fed into Tofu for simulation. If you have yet to do so, compile the Tofu Circuit Simulator 
using the makefile or using the following command: 

gcc -ansi -pedantic -Wall -o tofu prog.c 

To execute a Tofu source file, pass it to the simulator using input redirection. For instance: 

$ ./tofu < oneline.tofu 
Build complete: 1 components, 2 nodes. 
1: 01 
2: 10 

The simulator expects syntactically correct input files. Syntax errors will result in undefined behavior 
and typically a segmentation fault (core dump). 

This tutorial discusses relay circuit theory and how to use the Tofu Circuit Simulator. 

 

A relay consists of a solenoid (an electromagnetic) and a 3-contact switch. Two of the contacts of the 
switch are stationary. The third contact is a mechanical lever that can toggle between the other two. A 
spring applies tension to the lever and holds 2 of the contacts together in the relay’s relaxed position. 
However, when the solenoid is energized, it magnetically draws the lever, overcoming the tension of the 
spring, and moves it from one stationary contact to the other. When the solenoid is shutoff, the spring 
toggles the switch back to the initial state.



 

A relay physically has 5 terminals, but we can connect 1 end of the solenoid to a resistor and connect the 
resistor to ground. This produces a component with 4 logical terminals: coil (C), lever (L), normally-
disconnected (ND) and normally-connected (NC). To energize the solenoid, terminal C must be 
connected to the power voltage. 

Power indicates a logical true, the binary 1. Lack of power indicates a logical false, the binary 0. Note, 0 
is not the ground voltage. Rather, 0 means floating. 

The run Command 
The run command accepts the following parameters: 

run [simulation iterations] [half clock period] [component] [[ params ]] 

Here’s a 1 line Tofu file example (refer to file oneline.tofu): 

run 3 1 r 1 1 ? ? 

The first parameter indicates that the simulation will terminate after 3 iterations. Each iteration consists 
of 2 phases. In the first phase, the power voltage propagates from the power node through the electronic 
components successively energizing nodes along the way. If a circuit pathway exists between the power 
node and some other node, that node is energized and is said to be “reachable” from the power node. 
Unreachable nodes are left floating; they are not connected to power or ground. At the end of the first 
phase, reachable nodes are assigned logic 1 and unreachable nodes are assigned logic 0. In the second 
phase, the internal states of the electronic components change in response to nodes they are connected 
to. In the case of a relay, that means the lever may flip position in response to the coil node value. 

If you specify 0 for the iteration count, the simulation will continue indefinitely. 

The second parameter is the half clock period. This is discussed further below. 

The third parameter, r, instructs Tofu to instantiate a relay. Relays accept the 4 nodes discussed above: 
coil, lever, normally-disconnected and normally-connected. When the coil node is 0, the lever and the 
normally-connected nodes form a conductive pathway. When the coil node is 1, the lever and normally-
disconnected nodes form a conductive pathway. One way to think about is like this: 

r booleanNode leverNode trueNode falseNode 
 
if (booleanNode) { leverNode <-> trueNode } else { leverNode <-> falseNode } 



The two 1’s indicate that the coil and lever nodes are connected to power. The ?’s are probes, nodes we 
want to inspect during the simulation. Since the relay starts off in its relaxed position (lever and 
normally-connected touching) and the coil node is connected to power, the lever moves between 
contacts. 

Here’s the output: 

$ ./tofu < oneline.tofu 
Build complete: 1 components, 2 nodes. 
1: 01 
2: 10 

In the first iteration, the normally-disconnected node was floating (0) and the normally-connected node 
was energized (1) because of the position of the lever. However, in the second iteration, the lever moved 
and the values swapped as a result. Even though we asked for 3 iterations, only 2 printed out. Tofu 
won’t display iterations unless a probed node changes state. 

Here’s a variation of the example: 

run 100 10 r c 1 ? ? 

In this case, we ask for 100 iterations with a clock period of 20 (the clock will change every 10 
iterations). Tofu provides the clock node, c, and the inverse clock node, k. The clock node will flip 
between power (1) and floating (0) at the specific iteration count. The inverse clock node, as it’s name 
suggests, is always the negative of the clock node value. In this example, the coil node is specified as the 
clock. Every 10 iterations, the lever will toggle. Here’s the result: 

Build complete: 1 components, 2 nodes. 
1: 01 
2: 10 
11: 01 
21: 10 
31: 01 
41: 10 
51: 01 
61: 10 
71: 01 
81: 10 
91: 01 

The run command can be placed anywhere within the Tofu file. Typically, it’s the first or the last 
statement. 

The def Command 
Tofu allows you to define components composed other components with the def command. The image 
below shows how to construct a buffer out of a single relay and the symbol for a buffer. 



 

A buffer simply propagates the value of the input node to the output node, but after a short delay. The 
lever takes an iteration to flip in response to a change in input. Again, the 0 and 1 refer to floating 
(connected to nothing as opposed to ground) and power respectively. Here’s how to define a buffer (see 
buffer.tofu): 

# Buffer 
def buf input output : 
  r input output 1 0 
 
run 100 10 buf c ? 

# is used to indicate comments. The # and any characters to the right of the # are ignored by Tofu. 

The form of the def command is: 

def [component name] [[ ... component node names ... ]] : 

The subcomponents follow. Indentation is ignored, but recommended. A component definition is 
terminated by the start of another component definition (when another def command is reached), a run 
command is reached or the end of the file is reached. In this case, run ends the definition of buf. As per 
the last example, we request 100 iterations with a clock period of 20. The clock node is used as the input 
node and we probe the output node. Here’s the result: 

$ ./tofu < buffer.tofu 
Build complete: 1 components, 2 nodes. 
1: 0 
2: 1 
11: 0 
21: 1 
31: 0 
41: 1 
51: 0 
61: 1 
71: 0 
81: 1 
91: 0 

How about an inverter? 



 

# Inverter 
def inv input output : 
  r input output 0 1 
 
run 100 10 inv c ? 

Result: 

Build complete: 1 components, 2 nodes. 
1: 1 
2: 0 
11: 1 
21: 0 
31: 1 
41: 0 
51: 1 
61: 0 
71: 1 
81: 0 
91: 1 

Using a single relay, it’s actually possible to produce a buffered and an inverted signal: 

 

Here’s the definition followed by some tests: 

def bufInv input output outputNeg : 
  r input 1 output outputNeg 
 
run 10 1 bufInv 0 ? ? 
 
Build complete: 1 components, 3 nodes. 
1: 01 
 
run 10 1 bufInv 1 ? ? 
 



Build complete: 1 components, 2 nodes. 
1: 01 
2: 10 

Many different kinds of relays exist, but the relay depicted here is the only kind provided by Tofu. One 
useful type of relay contains 1 coil and multiple switches like this four double-pole relay: 

 

# Four double-pole relay 
def r4 coil l3 nd3 nc3 l2 nd2 nc2 l1 nd1 nc1 l0 nd0 nc0 : 
  r coil l3 nd3 nc3 
  r coil l2 nd2 nc2 
  r coil l1 nd1 nc1 
  r coil l0 nd0 nc0 
 
run 100 10 r4 c 1 ? ? 1 ? ? 1 ? ? 1 ? ? 

The new component, r4, is an abstraction that represents the four double-pole relay. If you choose, after 
defining it, you can ignore r and build all circuits completely out of r4. Here’s the output: 

Build complete: 4 components, 8 nodes. 
1: 01010101 
2: 10101010 
11: 01010101 
21: 10101010 
31: 01010101 
41: 10101010 
51: 01010101 
61: 10101010 
71: 01010101 
81: 10101010 
91: 01010101 

Note, in the definition of r4, it’s tempting to use c for the coil node, but c is reserved for the clock node. 
Nodes can’t share names with keywords (def and run), reserved node names (c, k, 0 and 1) and 
components (r and others you define). Node names can be numerical, but 0 and 1 are already taken. 

Gates 



An AND gate is produced by chaining relays in series. The inputs are the coil nodes. The outputs are the 
levers. The normally-disconnected node of the first relay in the chain is connected to power. Each lever 
node is successively connected to the normally-disconnected node of the next relay in the chain. In this 
way, all levers must be flipped for the output to be 1.  

 

# AND Gate 
def and i1 i0 o : 
  r i0 z 1 0 
  r i1 o z 0 

Note that the node z is not one of the nodes in the def argument list. It exists only within the scope of 
the AND gate definition like a local variable. 

The series chain can be extended to any number of inputs. Here’s a 4-input AND gate: 

 

# 4-Input AND Gate 
def and4 i3 i2 i1 i0 o : 
  r i3 z 1 0 
  r i2 y z 0 
  r i1 x y 0 
  r i0 o x 0 

One interesting thing to note is that no matter how long the chain is, it always takes the same number of 
iterations to generate the output because all the relay levers flip in parallel. 

A relay series chain can be thought of as a pattern detector. The 4-input AND gate only produces a 1 
signal if it detects the pattern 1111. To detect an arbitrary pattern you simply need to adjust the wiring 
on those relays that look for 0’s. For instance, this circuit detects the pattern 1010: 



 

# 1010 Pattern Detector 
def 1010detector i3 i2 i1 i0 o : 
  r i3 z 1 0 
  r i2 y 0 z 
  r i1 x y 0 
  r i0 o 0 x 

A NAND gate only produces an output of 0 if all inputs are 1. This is done by putting relays in parallel. 
The inputs are connected to the coils and the output is shared among all the normally-connected nodes. 
The levers are connected to power. All the levers need to be flipped to prevent power from reaching the 
output node. 

 

# NAND Gate 
def nand i0 i1 o : 
  r i0 1 0 o 
  r i1 1 0 o 

The OR gate is very similar to NAND. The relays are put in parallel with the inputs connected to the 
coils. The levers are connected to power, but the normally-disconnected nodes are joined together to 
form the output. In this way, if any of the levers are flipped, power will reach the output node. The 
similarity to NAND follows from De Morgan’s Law: A | B = !(!A & !B). Also note that an OR gate 
is essentially a bunch of buffers connected in parallel. 



# OR Gate 
def or i0 i1 o : 
  r i0 1 o 0 
  r i1 1 o 0 

NOR is very similar to AND. The relays are chained in series forming a path from power through the 
levers and the normally-connected nodes. The inputs are the coils. If any of the levers are flipped, the 
chain will be broken. All inputs need to be 0 for the output to be 1. NOR can be thought of as a pattern 
detector looking for all zeros (a zero detector). The similarity to AND follows from De Morgan’s Law: !
(A | B) = !A & !B. 

 

# NOR Gate 
def nor i0 i1 o : 
  r i0 1 0 z 
  r i1 z 0 o 

XOR (exclusive-OR) produces an output of 1 only if the inputs don’t match. This is achieved by 
connecting both inputs to the coils. One lever is connected to power and the other lever is the output. 
The normally-connected and normally disconnected terminals of the relays are cross connected. A 
pathway only exists from one lever to the other if they are in opposite states. 

 

# XOR Gate 
def xor i0 i1 o : 
  r i0 1 b a 
  r i1 o a b 

XNOR is the inverse of XOR. It only produces an output of 1 if the inputs match. The circuit is the same 
as XOR except there is no cross connection. A pathway only exists from one lever to the other if the 
levers are in the same state. 



 

# XNOR Gate 
def xnor i0 i1 o : 
  r i0 1 a b 
  r i1 o a b 

Gate Optimizations 
If you were actually constructing a computing device out of relays, you’d probably want to use as few as 
possible. Consider constructing a 2-input AND gate with a single relay: 

 

# AND Gate with Single Relay 
def and1 i1 i0 o : 
  r i1 o i0 0 

If you test it, it will certainly appear to work; however, this circuit is dangerous. Up until now, inputs 
were always connected to the coils of the relays. Meaning, the output was fully decoupled from the 
input. There was no way a signal could inadvertently propagate from the output back to one of the 
inputs. The coil is simply not connected to any of the other terminals of the relay. But, in this circuit, if 
node i1 were energized and the output node were energized by some other circuitry that it’s connected 
to, node i0 could get energized. Power can flow in this AND gate in reverse. If you use this 
optimization, you must take that possibility into consideration. 

How about an OR gate with no relays at all? 

 

This circuit poses the same danger as the AND optimization. Since the inputs are connected to each 
other, one could inadvertently energize the other. Here’s a 1-relay version that’s a little safer:



 

Now at least one of the inputs is decoupled from the output by a buffer. There’s still the possibility of 
the output driving the other input. Note, if you use 2 buffers, the circuit is equivalent to the OR gate 
presented in the previous section. 

Adders 
Given single-bit numbers, A and B, what is A + B? There’s only 4 combinations: 

0 + 0 = 00 
0 + 1 = 01 
1 + 0 = 01 
1 + 1 = 10 

The sum of 2 single-bit numbers is a 2-bit number containing a sum bit and a carry bit. Here’s a truth 
table to make it clearer: 

AB S1 S0 
00  0  0 
01  0  1 
10  0  1 
11  1  0 

S0 can be generated with an XOR gate and S1 can be generated with an AND gate. Combining those 
gates together produces what is known as a “half adder”: 

# Half Adder 
def halfAdder a b s1 s0 : 
  and a b s1 
  xor a b s0 

Note, S0 and S1 were used as symbols instead of S and C for the sum and carry bits respectively 
because we’ll built up to multi-bit adders below and also, C is reserved for the clock node. 

Given 3 single-bit numbers, A, B, and C, what is A + B + C? If all 3 inputs are 1, the result is 11 in 
binary. So, we still only need 2 output bits. We can start out by adding A and B with the half adder to 
produce the 2-digit number S1 S0. Then we’ll add C to that 2-digit number. To do so, we’ll add S0 and 
C with another half adder. That will produce a sum bit, which is the lower bit in the final answer, and a 
carry which must be added to S1 to produce the higher bit in the final answer. That suggests we need 3 
half adders, but consider possible carry combinations here. If S1 is 1, then S0 must be 0 from the table 
above. In that case, adding S0 and C produces no carry. If S1 is 0, then adding S0 and C may produce a 
carry, which will become the higher bit in the final answer. So, instead of a third half adder, the higher 
bit in the final answer can be produced by ORing together S1 and the carry produced by adding S0 and 
C. 

So, what good is such a circuit anyway? The idea is to produce a circuit called a “full adder” that takes 2 
single-bit numbers, A and B, and third single-bit number, carry-in, and produce a sum bit and a carry-



out bit. The full adders will be chained together by connecting the carry-in and carry-out terminals 
together. The initial carry-in will be set to 0. The final carry-out is the carry produced by adding together 
the multi-bit input values. Here’s the full adder: 

 

# Full Adder 
def fullAdder carryIn a b carryOut sum : 
  halfAdder a b s1 s0 
  halfAdder s0 carryIn carry sum 
  or s1 carry carryOut 

Now, let’s chain them together to produce multi-bit adders: 

# 2-bit Adder 
def adder2 carryIn a1 a0 b1 b0 carryOut s1 s0 : 
  fullAdder carryIn a0 b0 carry s0 
  fullAdder carry a1 b1 carryOut s1 
 
# 4-bit Adder 
def adder4 carryIn a3 a2 a1 a0 b3 b2 b1 b0 carryOut s3 s2 s1 s0 : 
  adder2 carryIn a1 a0 b1 b0 carry s1 s0 
  adder2 carry a3 a2 b3 b2 carryOut s3 s2   
 
# 8-bit Adder 
def adder8 carryIn 
             a7 a6 a5 a4 a3 a2 a1 a0 
             b7 b6 b5 b4 b3 b2 b1 b0 
    carryOut s7 s6 s5 s4 s3 s2 s1 s0 : 
  adder4 carryIn a3 a2 a1 a0 b3 b2 b1 b0 carry s3 s2 s1 s0 
  adder4 carry a7 a6 a5 a4 b7 b6 b5 b4 carryOut s7 s6 s5 s4 

There are a few things you should note from this. First, you can break up long lines with carriage 
returns. The parser uses the colon to determine when the def parameter list ends. For the body of def, 
the parser uses the lengths of the parameter lists of the defined electronic components to determine when 
a node list ends. Second, there is no looping syntax. It would be nice to loop 8 times, connecting full 
adders together to produce adder8. Instead, doubling components up is used. 

Let’s test out our 8-bit adder. Let’s compute 57 + 142, which is 111001 + 10001110 in binary: 

# 57 + 142 = ? 
run 100 1 adder8 0   
    0 0 1 1 1 0 0 1     
    1 0 0 0 1 1 1 0 



  ? ? ? ? ? ? ? ? ? 

Note that 0 is used for the initial carry-in. Here’s the result: 

$ ./tofu < adder.tofu 
Build complete: 80 components, 145 nodes. 
1: 000000000 
3: 010110111 
4: 010100111 
6: 010000111 
8: 011000111 

That’s the correct answer (11000111 is 199 in decimal). This circuit is known as a “ripple adder” 
because the carry values must ripple from one adder to the next in the chain before the final answer is 
determined. That means it can take many iterations to get the answer. Consider 255 + 1. 255 is 
11111111 in binary; so, we’ll produce a running carry that must travel from one end of the ripple adder 
to the other before it comes up with 256: 

# 255 + 1 = ? 
run 100 1 adder8 0   
    1 1 1 1 1 1 1 1     
    0 0 0 0 0 0 0 1 
  ? ? ? ? ? ? ? ? ? 
 
Build complete: 80 components, 144 nodes. 
1: 000000000 
3: 011111110 
4: 011111100 
6: 011111000 
8: 011110000 
10: 011100000 
12: 011000000 
14: 010000000 
16: 000000000 
17: 100000000 

Konrad Zuse, the computer pioneer, came up with a better way. He proposed a dual-rail-carry full adder 
that uses 2 four-double-pole relays: 

 

“Dual-rail-carry” means that in addition to accepting carry-in and producing carry-out, it accepts and 
produces the inverse carry signals. As with the full adder above, these are chained together to form a 



multi-bit adder. The initial carry-in is set to 0 and the initial carry-in-negative is set to 1. The final carry-
out is the carry for the sum of the multi-bit input values and the final carry-out-negative is ignored. 

# Konrad Zuse Dual-Rail-Carry Full Adder 
def zuseFullAdder carryInNeg carryIn a b carryOutNeg carryOut sum : 
  r4 a carryInNeg y z sum w x 1 v y carryIn u v  
  r4 b carryOutNeg z y carryInNeg x w carryIn w x carryOut v u 
 
# Konrad Zuse Dual-Rail-Carry 2-bit Adder 
def zuseAdder2 carryInNeg carryIn a1 a0 b1 b0 carryOutNeg carryOut s1 s0 : 
  zuseFullAdder carryInNeg carryIn a0 b0 cOutNeg cOut s0  
  zuseFullAdder cOutNeg cOut a1 b1 carryOutNeg carryOut s1 
 
# Konrad Zuse Dual-Rail-Carry 4-bit Adder 
def zuseAdder4 carryInNeg carryIn a3 a2 a1 a0 b3 b2 b1 b0  
    carryOutNeg carryOut s3 s2 s1 s0 : 
  zuseAdder2 carryInNeg carryIn a1 a0 b1 b0 cOutNeg cOut s1 s0  
  zuseAdder2 cOutNeg cOut a3 a2 b3 b2 carryOutNeg carryOut s3 s2 
 
# Konrad Zuse Dual-Rail-Carry 8-bit Adder 
def zuseAdder8 carryInNeg carryIn  
                         a7 a6 a5 a4 a3 a2 a1 a0 
                         b7 b6 b5 b4 b3 b2 b1 b0 
    carryOutNeg carryOut s7 s6 s5 s4 s3 s2 s1 s0 : 
  zuseAdder4 carryInNeg carryIn a3 a2 a1 a0 b3 b2 b1 b0 cOutNeg cOut s3 s2 s1 s0  
  zuseAdder4 cOutNeg cOut a7 a6 a5 a4 b7 b6 b5 b4  
      carryOutNeg carryOut s7 s6 s5 s4 

Note, r4 is defined above; it’s not a standard component. Now, let’s repeat the computations above (see 
zuse.tofu and zuse2.tofu): 

# 57 + 142 = ? 
run 100 1 zuseAdder8 1 0   
    0 0 1 1 1 0 0 1     
    1 0 0 0 1 1 1 0 
? ? ? ? ? ? ? ? ? ? 
 
Build complete: 64 components, 81 nodes. 
1: 1000000000 
2: 1011000111 
 
# 255 + 1 = ? 
run 100 1 zuseAdder8 1 0   
      1 1 1 1 1 1 1 1     
      0 0 0 0 0 0 0 1 
  ? ? ? ? ? ? ? ? ? ? 
 
Build complete: 64 components, 80 nodes. 
1: 1000000000 
2: 0100000000 

Ignore the left-most bit; it’s the carry-out-negative. The answers are correct. Amazingly, both 
computations took only 2 iterations. In fact, regardless of the input values, it will always take exactly 2 
iterations even if we widen this to any number of bits. How is this possible? The bits of the numbers we 
want to add are channeled into the relay coils. After the first iteration, all the relay levers flip in parallel. 
In the second iteration, the carry-in and the carry-in-negative signals propagate through the relays. The 
carry signals are not connected to any coils; so, no relay levers need to move in response to this 



propagation. Consequentially, the multi-bit sum is produced in the second iteration. 

So, how did Konrad Zuse come up with this? Let’s start with the truth table: 

Iiab Oos 
1000 100  
1001 101 
1010 101 
1011 010 
0100 101 
0101 010  
0110 010 
0111 011 

I, i, O, o are carry-in-negative, carry-in, carry-out-negative and carry-out respectively (the negatives are 
capitalized). If you look carefully at s, you’ll notice it’s the XOR of a and b when I is 1 and it’s the 
XNOR of a and b when i is 1. As described above, XOR can be created by cross-connecting 2 relays, 
which forces both levers to be in opposite states for a signal to be carried from one lever to the other. In 
this case, instead of power being that signal, carry-in-negative is the signal; so, the XOR only takes 
place when I is 1: 

 

Similarly, an XNOR is constructed using carry-in instead of power; so, the XNOR only takes place 
when i is 1. 

 

Taking advantage of the dangerous OR optimization discussed above, the XOR and XNOR are 
combined like this: 

 

Since the carry-in and carry-in-negative levers move together, no pathway exists that allows them to 
touch and inadvertently energize each other. So, the optimization is okay in this case. 



Returning to the truth table, o looks like OR when i is 1 and o looks like AND when i is 0. For either 
value of i, o is 1 when a and b are both 1. Now, the only difference between OR and XOR is the case 
when a and b are both 1; so, we can use XOR as long as we can force the output to 1 when a and b are 
both 1. That XOR will be powered by i; meaning, o will be 0 when i is 0 except when a and b are both 
1. Putting those ideas together yields this part of the circuit: 

 

The inverse circuit is built along the same lines: 

 

What about negative numbers? These adders are already capable of handling them. In binary, a number 
can be interpreted as signed or unsigned where the sign bit is the left-most bit. When the sign bit is 1, 
it’s a negative number. Consider the example above where we added 57 and 142. 142 in binary is 
10001110. This is equivalent to -114. How so? You can reverse the sign of a binary number by negating 
all bits and adding 1. If we negate the bits we get 01110001. And, if we add 1 to that we get 01110010, 
which is 114. When we computed the sum of 57 and 142, we also computed the sum of 57 and -114. 
The result was 11000111. This is equivalent to -57. Well, almost. If we include the carry-out bit, the 
result was 011000111. Carry-out represents the left-most digit of the sum. It should be 1 since the left-
most digit of a negative number is 1. We’ll get back to this issue momentarily. 

How about subtraction? It’s fairly straightforward to convert a multi-bit adder into a multi-bit 
adder/subtractor. The circuit will provide an extra input. When that input is 0, it will add A and B. When 
it’s 1, it will compute A – B. To subtract, the circuit will negate the bits of B, add 1 and add that total to 
A. To do the bitwise negation, we can’t just use inverters on the bits of B because the negation should 
only take place if the subtract signal is 1. The solution is to use XOR gates where one input is a bit of B 
and the other input is the subtract signal. If the subtract signal is 0, the B bit passes through unchanged 
(a number XORed against 0 is the original number). If the subtract signal is 1, the B bit is inverted. To 
add 1 to the bitwise negated B, we’ll use 1 as the initial carry-in instead of 0 during subtraction (i.e. 
connect initial carry-in to the subtract signal itself). Now, what about that pesky carry-out bit? The 
adder/subtractor interprets A and B as positive numbers. You can imagine that they each have an extra 
leading 0 bit. When B is bitwise negated, that leading bit should always turn into a 1. When the negated 
B plus 1 is added to A, it may produce a carry-out. If it doesn’t produce a carry-out, the negated leading 
bit should become the carry-out in the final answer. If a carry-out was produced, it should be added to 
this leading, which sums to 10 in binary. We’ll only keep the lower bit of that 2-digit value. Meaning, if 
we’re subtracting, we need to invert the carry-out to remain consistent with the concept of the leading 
bit. Again, an XOR gate comes to the rescue. 

# 1-bit Partial Adder/Subtractor 
def xFullAdder subtract carryInNeg carryIn a b carryOutNeg carryOut sum : 
  xor subtract b bNeg 
  zuseFullAdder carryInNeg carryIn a bNeg carryOutNeg carryOut sum 



 
# 2-bit Partial Adder/Subtractor 
def xFullAdder2 subtract carryInNeg carryIn  
    a1 a0 b1 b0 carryOutNeg carryOut s1 s0 : 
  xFullAdder subtract carryInNeg carryIn a0 b0 cOutNeg cOut s0  
  xFullAdder subtract cOutNeg cOut a1 b1 carryOutNeg carryOut s1 
 
# 4-bit Partial Adder/Subtractor 
def xFullAdder4 subtract carryInNeg carryIn a3 a2 a1 a0 b3 b2 b1 b0  
    carryOutNeg carryOut s3 s2 s1 s0 : 
  xFullAdder2 subtract carryInNeg carryIn a1 a0 b1 b0 cOutNeg cOut s1 s0  
  xFullAdder2 subtract cOutNeg cOut a3 a2 b3 b2 carryOutNeg carryOut s3 s2 
 
# 8-bit Partial Adder/Subtractor 
def xFullAdder8 subtract carryInNeg carryIn  
                       a7 a6 a5 a4 a3 a2 a1 a0 
                       b7 b6 b5 b4 b3 b2 b1 b0 
    carryOutNeg carryOut s7 s6 s5 s4 s3 s2 s1 s0 : 
  xFullAdder4 subtract carryInNeg carryIn a3 a2 a1 a0 b3 b2 b1 b0  
      cOutNeg cOut s3 s2 s1 s0  
  xFullAdder4 subtract cOutNeg cOut a7 a6 a5 a4 b7 b6 b5 b4  
      carryOutNeg carryOut s7 s6 s5 s4 
 
# 8-bit Adder/Subtractor 
def adderSubtractor subtract   
             a7 a6 a5 a4 a3 a2 a1 a0 
             b7 b6 b5 b4 b3 b2 b1 b0 
    carryOut s7 s6 s5 s4 s3 s2 s1 s0 : 
  inv subtract carryInNeg  
  xFullAdder8 subtract carryInNeg subtract  
                       a7 a6 a5 a4 a3 a2 a1 a0 
                       b7 b6 b5 b4 b3 b2 b1 b0 
      carryOutNeg cOut s7 s6 s5 s4 s3 s2 s1 s0 
  xor cOut subtract carryOut 

To construct the circuit, adders were joined together where B was bitwise negated based on the subtract 
signal. Once these xFullAdders reached the desired length (8 bits in this case), the adder/subtractor was 
constructed by using the subtract signal as the initial carry-in and inverting the carry-out when the 
subtract signal is 1. Here’s some example output: 

# 15 + 1 = ? 
run 100 1 adderSubtractor 0  
    0 0 0 0 1 1 1 1     
    0 0 0 0 0 0 0 1 
  ? ? ? ? ? ? ? ? ? 
 
Build complete: 83 components, 113 nodes. 
1: 000000000 
2: 000001111 
3: 000010000 
 
# 15 - 1 = ? 
run 100 1 adderSubtractor 1  
    0 0 0 0 1 1 1 1     
    0 0 0 0 0 0 0 1 
  ? ? ? ? ? ? ? ? ? 
 
Build complete: 83 components, 112 nodes. 
1: 000000001 



2: 100010000 
3: 100001110 
4: 000001110 

Steering Circuits 
A computational device must be able to direction information from one location in the machine to 
another. To select data from one of many inputs, a circuit known as a multiplexer (a.k.a. “mux”) is used. 
Below is a 2-to-1 mux. It provides 2 inputs and 1 output. When A = 0, o = i0. When A = 1, o = i1. 
The left shows how to construct the circuit with a single relay. The right shows the electronic 
component symbol for a mux. 

 

Multiple multiplexers can be joined together to form larger ones. Here’s a 4-to-1 mux: 

 

Collectively, the A nodes address the input nodes. For instance, address 10 in binary (A1 = 1 and A0 = 
0) is 2 in decimal and input i2 is selected for output. 

The following listing shows the construction of an 8-to-1 mux: 

# 2-to-1 Mux 
def mux a i1 i0 o : 
  r a o i1 i0 
 
# 4-to-1 Mux 
def mux4to1 a1 a0 i3 i2 i1 i0 o : 
  mux a0 i1 i0 x 
  mux a0 i3 i2 y 
  mux a1 y x o 
 
# 8-to-1 Mux 
def mux8to1 a2 a1 a0 i7 i6 i5 i4 i3 i2 i1 i0 o : 
  mux4to1 a1 a0 i3 i2 i1 i0 x 
  mux4to1 a1 a0 i7 i6 i5 i4 y 



  mux a2 y x o 

To test the 8-to-1 mux, we’ll set all inputs to 0 except for i4. Then we’ll punch in the address 4 (100 in 
binary) and verify that the output is 1. Next, we’ll change the address to 5 (101 in binary) and check that 
the output is 0. 

run 100 1 mux8to1   1 0 0   0 0 0 1 0 0 0 0   ? 
 
Build complete: 7 components, 16 nodes. 
1: 0 
2: 1 
 
run 100 1 mux8to1   1 0 1   0 0 0 1 0 0 0 0   ? 
 
Build complete: 7 components, 15 nodes. 
1: 0 

Due to the nature of relays, these multiplexers work in reverse. You can treat the output as a single input 
and the inputs as multiple outputs. That way you can steer a single bit to multiple destinations. Such a 
circuit is known as a “demultiplexer” or “demux” for short and many books use the same symbol for a 
mux and a demux. 

A demux can be converted into a decoder by permanently setting the input node to 1: 

# 3-to-8 Decoder 
def decoder3to8 a2 a1 a0 o7 o6 o5 o4 o3 o2 o1 o0 : 
  mux8to1 a2 a1 a0 o7 o6 o5 o4 o3 o2 o1 o0 1 

A decoder accepts an address and turns on the output that the address refers to. An n-to-m decoder has n 
address nodes and m output nodes. To test the 3-to-8 decoder above, we’ll address output o4 (100 in 
binary): 

run 100 1 decoder3to8 1 0 0  ? ? ? ? ? ? ? ? 
 
Build complete: 7 components, 16 nodes. 
1: 00000001 
2: 00010000 

In a CPU, many components typically share a common bus. The bus is nothing more a bunch of nodes. 
The bus is usually drawn as a set of parallel lines, each representing a wire capable of carrying 1 bit of 
information. All the components that want to communicate are connected to these shared nodes. But, if 
the components tried to talk over the bus simultaneously, chaos would ensue. Communication between 
components over the bus must be a controlled process. Essentially, one component will speak to the bus 
while one or more components listen to the bus. 

Multi-terminal components connect to the bus via transmission gates:



 

The top of the image shows how to construct a transmission gate with a relay and the bottom shows the 
electronic component symbol for a transmission gate. A transmission gate allows signals to pass from A 
to B or from B to A when the enable (E) input is 1. Note that the symbol is an arrow pointing to the right 
touching an arrow pointing to the left. It almost looks like 2 buffers, but no buffering occurs as the 
signal passes through the gate. 

def trans enabled a b : 
  r enabled a b 0 
 
run 10 1 trans 1 1 ? 
 
Build complete: 1 components, 2 nodes. 
1: 0 
2: 1 

Each terminal of a multi-terminal component connects to one of the nodes of the bus through a 
transmission gate. All the enable input nodes are tied together. Meaning, with the assertion of a single 
enable signal, a channel between the component and the bus opens. Here’s how to construct such multi-
bit transmission gates: 

# 2-bit transmission gate 
def trans2 enabled a1 a0 b1 b0 : 
  trans enabled a1 b1 
  trans enabled a0 b0 
 
# 4-bit transmission gate 
def trans4 enabled a3 a2 a1 a0 b3 b2 b1 b0 : 
  trans2 enabled a3 a2 b3 b2 
  trans2 enabled a1 a0 b1 b0 
 
# 8-bit transmission gate 
def trans8 enabled a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4 b3 b2 b1 b0 : 
  trans4 enabled a7 a6 a5 a4 b7 b6 b5 b4 
  trans4 enabled a3 a2 a1 a0 b3 b2 b1 b0 
 
# 16-bit transmission gate 
def trans16 enabled  
    a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0  
    b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 : 
  trans8 enabled a15 a14 a13 a12 a11 a10 a9 a8 b15 b14 b13 b12 b11 b10 b9 b8 
  trans8 enabled a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4 b3 b2 b1 b0 



They can be used for multiplexing. A mux accepts a binary address and directs 1 of several inputs to a 
single output. Compare that idea to this: 

 

B represents a single node of the bus. C0, C1 and C2 represent terminals from 3 different components 
that want to share B. You can think of C0, C1 and C2 as inputs and B as a single output. You can select 
among one of the inputs by asserting the appropriate enable signal. But, the concept goes beyond 
multiplexing. For instance, C0 and C1 can simultaneously access B by asserting E0 and E1 at the same 
time. As long as one of those components treats B as an output node and the other treats B as an input 
node, sharing B works. We’ll return to these idea in a later section. 

Memory 
In the real world, there are many kinds of relays and relay-like devices that retain state. The lever in a 
latching relay (a.k.a. a keep relay) remains in its last position. Some work similar to those button 
ballpoint pens where each button press alternately extends or retracts the pen tip. In the relay, an 
electronic pulse may toggle the position of the lever. That’s achieved though a ratchet mechanism. 
Another version of the latching relay contains 2 solenoids and the lever is connected to a weak magnet 
that keeps it stuck to one of the 2 contacts. Momentarily energizing one of the solenoids can overcome 
the weak magnet and flip the lever to the other state where it remains stuck there. 

It’s also possible to construct a memory circuit known as a “latch” using the conventional relay 
discussed thus far. Consider this circuit: 

 

A latch is capable of memorizing 1 bit of information. This latch is constructed out of a 2-to-1 mux and 
a buffer. It provides 3 terminals: data (D), write (W) and output (Q). Q is the value currently stored in 
the latch. When W is 0, Q enters the mux, which channeled its value into the buffer. The output of the 
buffer is Q. The loop keeps Q at some value indefinitely. To set Q to a different value, W is raised to 1. 
The mux then selects the D input and after a brief delay, the buffer propagates D to Q. When W drops 
back to 0, the feedback loop is reestablished, effectively memorizing D. Recognize that the loop is not 
just a loop of wire: 



 

The input of the buffer is the coil of a relay. This achieves 2 important things. First, the loop is 
constantly refreshed by the power node. Second, since the buffer relay lever may need to toggle, the 
latch will express the old value for a brief time while accepting a new value. We’ll see how that comes 
into play a little later. Also, note that it’s okay for D to change while W is 1. As long as D settles on a 
value before W returns to 0, the latch will remember the final value. 

With a slight alteration, the latch can be controlled by write-negative signal: 

 

Let’s define both of these latches: 

# Latch, stores when w = 1  
def latch w d q :  
  mux w d q z 
  buf z q 
 
# Latch, stores when w = 0  
def latchNeg w d q :  
  mux w q d z 
  buf z q 

Now, consider what happens if we chain those 2 components together like this: 



The latch is on the left and the latchNeg is on the right. This creates a 3 terminal electronic component 
called a “flip flop”. When W is 0, the latch (left) is stuck in its feedback loop and the latchNeg (right) 
lets the value expressed by the latch (left) to pass through to Q. When W becomes 1, both multiplexers 
change state, directing the other input terminal to the output. For a brief time (1 iteration), the buffers 
still reflect the original values. This means that the latchNeg (right) saves the value originally expressed 
by the latch (left). At the same time, the latch (left) accepts a new value from D. When W drops back 
to 0, both multiplexers change state again. The latch (left) successfully records D and the latchNeg 
soon after propagates it out to Q. This means that the flip flop records D when W = 1, but it doesn’t 
express the new value until W returns to 0. While W = 1, Q is the old value. We’ll utilize this property 
later when we discuss state machines. 

# Flip flop, stores when w rises to 1, expresses new value when w drops to 0  
def flipFlop w d q :  
  latch w d q2  
  latchNeg w q2 q 

Latches and flip flops store single bits of information. To store a few bytes of information, they can be 
grouped together to form registers. For example, here is a 1-byte register made of flip flops: 

def flipFlopRegister w d7 d6 d5 d4 d3 d2 d1 d0 q7 q6 q5 q4 q3 q2 q1 q0: 
  flipFlop w d7 q7 
  flipFlop w d6 q6 
  flipFlop w d5 q5 
  flipFlop w d4 q4 
  flipFlop w d3 q3 
  flipFlop w d2 q2 
  flipFlop w d1 q1 
  flipFlop w d0 q0 

Flip flop registers are the easiest type to work with. In a computing device, the input and output 
terminals are connected to multiple places via transmissions gates. 

 

The slash-8 indicates that the line actually represents a set of 8 wires, which also implies that those are 
8-bit transmission gates. The control lines that open and close the transmission gates are not shown. The 
control signals would normally originate from a state machine, a topic discussed below. 

To “load” the register with a new value, one of the transmission gates connected to the register’s input 
terminals would be opened and the write signal would be asserted. To “select” the value stored in a 



register and direct it to somewhere else in the machine, one of the transmission gates connected to the 
register’s output terminals would be opened. 

In the case of a flip flop register, the write signal is usually connected to the clock. When the clock is 1, 
a state machine would open the appropriate transmission gate and let a value flow into the register. 
When the clock drops to 0, the new value is saved and expressed to the output terminals. For example, 
you can connect the outputs of 3 registers to the inputs of an adder via transmission gates. And you can 
connect the output of the adder to the inputs of the registers again via transmission gates. 

 

With this configuration, it’s possible to select any register as an input to the adder and load the sum into 
any register. In fact, since a flip flop doesn’t express a new value until its write signal drops to 0, you 
can select a register for the adder and load the sum back into the very same register. Or even double the 
value in a register by selecting the same register twice for the adder. 

The adder may take a few simulation iterations to settle on the correct sum. During that time, the register 
being loaded will receive a changing value. Recall that it doesn’t matter if the input value of a flip flop is 
changing when the write signal is 1. It captures a new value at the moment that the write signal drops to 
0. The clock cycle must be adjusted appropriately to ensure that the write signal drops after all input 
values have settled. If the clock cycle is too fast, the register may load the wrong the value. 

With the write signal connected to the clock, a flip flop register gains a new value once per clock cycle. 
For a particular clock cycle, if the state machine fails to open any transmission gate connected to the 
register’s input terminals, the register will get erased (i.e. it will be cleared to all 0’s). A simple solution 
is to connect the output of the flip flop back to the input via a transmission gate. When the register 
doesn’t need to load a value from somewhere else, the state machine will open that transmission gate 
enabling the register to load itself. 

An alternative to a flip flop register is a latch register: 

def latchRegister w d7 d6 d5 d4 d3 d2 d1 d0 q7 q6 q5 q4 q3 q2 q1 q0: 
  latch w d7 q7 
  latch w d6 q6 
  latch w d5 q5 
  latch w d4 q4 
  latch w d3 q3 
  latch w d2 q2 
  latch w d1 q1 
  latch w d0 q0 



To load the register, a state machine would assert a signal that simultaneously sets write to 1 and opens a 
transmission gate. When the load signal drops, it’s important that write signal becomes 0 slightly sooner 
than the transmission gate closes or else the latch may end up saving the wrong value. You can achieve 
that with a few buffers: 

 

The load signal is separated from the write line via a buffer. That buffer allows multiple load signals to 
share the same write line, collectively forming a multi-input OR gate. The load signal is connect to the 
enable input of a transmission gate via 2 buffers. Changes to the load signal propagate to the write line 
faster than to the transmission gate. When the load signal drops, the transmission gate will remain open 
long enough for the latch to store the correct value. 

Selecting the output is the same as before; however, due to the nature of a latch, it is not possible to 
select and load from the same register. 

It’s actually possible to construct a type of latch out of a single relay: 

 

The write signal is negatively asserted. To store a value, it drops from 1 to 0. That enables D to change 
the position of the relay lever since it is connected to the relay coil. When the write terminal rises back 
to 1, if the lever is touching the normally-disconnected terminal, that 1 value will travel through the 
lever and to the coil, keeping the lever in that position. If the lever were touching the other terminal, that 
pathway won’t exist and lever remains in the relaxed state. 

Unlike the latch presented above, this latch doesn’t have an output terminal. The data terminal acts as 
both input and output. To construct a register, we’ll tie the negative-write terminals of 8 of these latches 
together: 

def tinyLatchRegister writeNeg d7 d6 d5 d4 d3 d2 d1 d0 : 



  r d7 d7 writeNeg 0  
  r d6 d6 writeNeg 0 
  r d5 d5 writeNeg 0 
  r d4 d4 writeNeg 0 
  r d3 d3 writeNeg 0 
  r d2 d2 writeNeg 0 
  r d1 d1 writeNeg 0 
  r d0 d0 writeNeg 0 

Loading a value onto this latch register involves similar circuitry as the previous latch register: 

 

The write line is connected to the negative-write terminal of the latch via an inverter and the load signal 
is separated from the write line by a buffer to allow multiple load signals to share the line. If there were 
multiple load signals, the buffers and the inverter would collectively form a multi-input NOR gate 
feeding the negative-write terminal. The load signal also opens a transmission gate and the double buffer 
ensures that the transmission gate remains open long enough to store a value when the load signal drops.

This is a very temperamental type of latch. Note that a pathway occasionally exists between the data 
terminal and the negative-write terminal. When loading a value into the register, if a single bit of the 
value is a 1, then not only will a pathway form between the data terminal and the negative-write terminal 
of one of the latches, but the negative-write terminal will now have logic 1. Since all the negative-write 
terminals are tied together in the register, it’s effectively the same as the negative-write signal of the 
register rising to 1. But, it should be 0 when you are trying to load a value. This means that as soon as 
the 8-bit transmission gate that feeds the data terminals of the register opens, the latch will trap the new 
value instantly. Unlike the flip flop and the previous latch, you can’t feed this latch a changing, unsettled 
input value. 

In a CPU, registers serve as tiny amounts of fast computer memory storing some of the variable values 
of a program being executed. But, a computer also needs access to large amounts of RAM to store the 
program itself and its associated data. It’s not very practical to build the main memory of a computer out 
of relays because of the enormous number of relays involved. But, if you were to build it, you might as 
use the aforementioned, temperamental latch register because it only uses 1 relay per bit of information. 

Our main memory will consist of hundreds or thousands of latch registers. You’ll need to provide an 
address to direction information to or from a particular latch. All of the latches will share a common data 
bus. As a step in that direction, we’ll construct this circuit:



 

def memoryRegister select load d7 d6 d5 d4 d3 d2 d1 d0 : 
  inv load writeNeg 
  inv writeNeg select 
  trans8 select d7 d6 d5 d4 d3 d2 d1 d0 z7 z6 z5 z4 z3 z2 z1 z0 
  tinyLatchRegister writeNeg z7 z6 z5 z4 z3 z2 z1 z0 

We can address 2 of these registers using demultiplexers: 

 

# 2 Bytes of memory 
def memory2 address select load d7 d6 d5 d4 d3 d2 d1 d0 : 
  mux address select1 select0 select 
  mux address load1 load0 load 
  memoryRegister select0 load0 d7 d6 d5 d4 d3 d2 d1 d0 
  memoryRegister select1 load1 d7 d6 d5 d4 d3 d2 d1 d0 

The value of the address terminal determines which of the 2 registers has access to the load and select 
signals. Also, note that the mux component is being used as a demultiplexer here. This can be doubled-
up indefinitely: 

# 4 Bytes of memory 
def memory4 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 : 
  mux a1 select1 select0 select 
  mux a1 load1 load0 load 
  memory2 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
  memory2 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
 
# 8 Bytes of memory 
def memory8 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 : 
  mux a2 select1 select0 select 
  mux a2 load1 load0 load 
  memory4 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
  memory4 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
 



# 16 Bytes of memory 
def memory16 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 : 
  mux a3 select1 select0 select 
  mux a3 load1 load0 load 
  memory8 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
  memory8 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
 
# 32 Bytes of memory 
def memory32 a4 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 : 
  mux a4 select1 select0 select 
  mux a4 load1 load0 load 
  memory16 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
  memory16 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
 
# 64 Bytes of memory 
def memory64 a5 a4 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 : 
  mux a5 select1 select0 select 
  mux a5 load1 load0 load 
  memory32 a4 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
  memory32 a4 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
 
# 128 Bytes of memory 
def memory128 a6 a5 a4 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 : 
  mux a6 select1 select0 select 
  mux a6 load1 load0 load 
  memory64 a5 a4 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
  memory64 a5 a4 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
 
# 256 Bytes of memory 
def memory256 a7 a6 a5 a4 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 : 
  mux a7 select1 select0 select 
  mux a7 load1 load0 load 
  memory128 a6 a5 a4 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 
  memory128 a6 a5 a4 a3 a2 a1 a0 select load d7 d6 d5 d4 d3 d2 d1 d0 

We'll stop at 256 bytes and check how many relays we consumed in the process by reading from address 
0: 

run 100 1 memory256 0 0 0 0 0 0 0 0  1 0  ? ? ? ? ? ? ? ? 

Here’s the result: 

$ ./tofu < memory.tofu 
Build complete: 5118 components, 7949 nodes. 
1: 00000000 

That’s already many times the number of relays required for a simple CPU. 

Now for a reality check. The original latch described above consists of a mux and a buffer. 



 

When the write signal (W) drops from 1 to 0, a feedback loop forms and the latch consequentially stores 
a value. But, the mux is built with a single relay where W connects to the coil of that relay. When W 
drops from 1 to 0, the lever in that relay physically jumps between terminals. During that brief swinging 
time, the lever is essentially a floating wire. No power can possibly be reaching the buffer during that 
time. Will the buffer relay lever as a consequence return to the relaxed state regardless of the value D? 

The magnetic field of a solenoid doesn’t dissipate immediately at the moment that power is cutoff. The 
intensity of the field will start to drop as soon as power is removed, but as long as it doesn’t drop below 
a certain threshold before power is restored, the position of the lever will remain the same. You can slow 
the process down further using a capacitor like this: 

 

When power is supplied to node i, the relay lever toggles as before and the capacitor rapidly charges to 
the power voltage. When power is cutoff, the capacitor temporarily acts like a battery as it discharges 
through the loop consisting of the relay coil and the resistors. You can prevent the relay from returning 
to the relaxed position for any desired duration by selecting the proper capacitance and resistance 
values; however, since the buffer reacts slower to changes in input, you’ll need to use a longer clock 
period to compensate. Also, since the capacitor acts like a battery, it’s possible for it to discharge 
backwards through the mux relay and out of the D input of the flip flop. Luckily, if you are only 
working in the simulated world of Tofu, you don’t need to be concerned about any of this. There is no 
brief relay lever swinging time in the simulation. The levers flip instantly. 

State Machines 
Check out this circuit: 



 

The clock is tied to the write node of the flip flop; so, every time the clock moves from 1 to 0, a new 
value might be expressed. Suppose andIn is 1. Anything XORed against 1 is inverted. Since the output 
of the flip flop, V, is fed back into the flip flop through the XOR gate, V toggles every clock cycle. This 
is a counting element. We’ll assemble many of them together and each V will represent one binary digit 
in the value of counter. The andIn signal will be 1 only when all the lower digits are all 1. If they’re all 
1, then it’s time for this digit to change. andIn ANDed with V produces andOut, which is used as the 
andIn signal of the next counting element. The initial andIn is set to 1; meaning, the lowest digit should 
always be toggling. 

def counterElement andIn andOut value : 
  xor andIn value data 
  flipFlop c data value 
  and andIn value andOut 

One key thing to note here is that the output of the flip flop along with other data (in this case the lower 
digits) is used to generate a new value of the flip flop. This is not possible with a latch because the 
output of a latch changes when the write signal is 1. A flip flop continues to express the old value while 
storing a new value. Now, let’s create an 8-bit counter: 

def counter2 andIn andOut v1 v0 : 
  counterElement andIn x v0 
  counterElement x andOut v1 
 
def counter4 andIn andOut v3 v2 v1 v0 : 
  counter2 andIn x v1 v0 
  counter2 x andOut v3 v2 
 
def counter8 andIn andOut v7 v6 v5 v4 v3 v2 v1 v0 : 
  counter4 andIn x v3 v2 v1 v0 
  counter4 x andOut v7 v6 v5 v4 
 
run 160 5 counter8 1 0 ? ? ? ? ? ? ? ? 

Let's test it out: 

$ ./tofu < counter.tofu 
Build complete: 64 components, 104 nodes. 
1: 00000000 
7: 00000001 
17: 00000010 
27: 00000011 



37: 00000100 
47: 00000101 
57: 00000110 
67: 00000111 
77: 00001000 
87: 00001001 
97: 00001010 
107: 00001011 
117: 00001100 
127: 00001101 
137: 00001110 
147: 00001111 
157: 00010000 

Notice the count changes every 10 iterations because we specified 5 for the half clock period. 

A counter is a simple example of a state machine. The realization of state machines that are discussed 
here consist of memory in the form of flip flops and logic that determines what the next state should be. 
The next state is recorded by the flip flops and cycle continues. In a CPU, a state machine controls the 
signal inputs (e.g. load and select) of the components, enabling data to move around as an organized 
process. The states that the state machine in a CPU goes through are governed by the instructions in 
memory. 

Now, let’s create an 8-bit shift register: 

def shift2 shiftIn q1 q0 : 
  flipFlop c shiftIn q1 
  flipFlop c q1 q0  
 
def shift4 shiftIn q3 q2 q1 q0 : 
  shift2 shiftIn q3 q2 
  shift2 q2 q1 q0 
 
def shift8 shiftIn q7 q6 q5 q4 q3 q2 q1 q0 : 
  shift4 shiftIn q7 q6 q5 q4 
  shift4 q4 q3 q2 q1 q0 

The shift register consists of 8 flip flops chained together such that the output of one flip flop is 
connected to the data node of the next flip flop in the chain. 

 

All the write signals are tied to the clock node. When the clock becomes 1, each flip flop records the 
value expressed by the flip flop to the left while continuing to express the old value. When the clock 
becomes 0, the flip flops express the new values and the value in the register has consequentially been 
shifted to the right. The shiftIn node allows you to specify what value fills in the left-most bit during 
shifting. Let’s set that to 1:



run 100 5 shift8 1 ? ? ? ? ? ? ? ? 

Now, let's see what happens: 

$ ./tofu < shift.tofu 
Build complete: 32 components, 48 nodes. 
1: 00000000 
7: 10000000 
17: 11000000 
27: 11100000 
37: 11110000 
47: 11111000 
57: 11111100 
67: 11111110 
77: 11111111 

Instead of feeding 1 into shiftIn, consider adding an extra flip flop and an inverter like this: 

 

def shiftOne q7 q6 q5 q4 q3 q2 q1 q0 : 
  flipFlop c 1 q 
  inv q shiftIn 
  shift8 shiftIn q7 q6 q5 q4 q3 q2 q1 q0 

The extra flip flop initially outputs 0, but after the first clock cycle, it indefinitely outputs 1. That output 
is inverted before it reaches the shiftIn terminal. Hence, the shift register pulls in a 1 followed by all 
0’s: 

run 100 5 shiftOne ? ? ? ? ? ? ? ? 
 
Build complete: 37 components, 56 nodes. 
1: 00000000 
7: 10000000 
17: 01000000 
27: 00100000 
37: 00010000 
47: 00001000 
57: 00000100 
67: 00000010 
77: 00000001 
87: 00000000 

We can successively connect the shift-out terminal to a buffer and feed it back into shiftIn: 



 

def loop q7 q6 q5 q4 q3 q2 q1 q0 : 
  flipFlop c 1 q 
  inv q shiftIn 
  shift8 shiftIn q7 q6 q5 q4 q3 q2 q1 q0 
  buf q0 shiftIn 
 
run 200 5 loop ? ? ? ? ? ? ? ? 
 
Build complete: 38 components, 57 nodes. 
1: 00000000 
7: 10000000 
17: 01000000 
27: 00100000 
37: 00010000 
47: 00001000 
57: 00000100 
67: 00000010 
77: 00000001 
87: 10000000 
97: 01000000 
107: 00100000 
117: 00010000 
127: 00001000 
137: 00000100 
147: 00000010 
157: 00000001 
167: 10000000 
177: 01000000 
187: 00100000 
197: 00010000 

If this were reduced to a 3-bit register, it could control a traffic light: green, yellow, red, green, yellow, 
red, etc. A traffic light is a simple state machine with 3 states. Each state is associated with a separate 
bulb. The 8-bit shift register can be considered a state machine with 8 states, each associated with the 
output of a separate flip flop. That extra flip flop boots up our little machine by getting it into the first 
state. The machine goes from one state to the next and then back to the first. It’s stuck in an infinite 
loop. 

Multipliers 
In this section, we’ll apply many of the ideas discussed above to construct a simple computing device 
capable of multiplying 2 numbers together. Multiplication in binary can be performed by the same 
technique people learn to do it in decimal on paper. When you multiply multi-digit numbers, you 
actually multiply the first value against each digit of the second value. That produces a series of products 
which are added up; however, each product must be shifted over to the left to align it with digit used to 
multiply before adding. The answer is the sum of all the shifted products.



Multiplying the first value against a digit of the second value in binary is very easy. If the digit is 0, then 
the product is 0. If the digit is 1, then the product is the original value. Let’s multiply two 4-bit numbers 
to see this in action: 

    0011 
  x 0101 
    ---- 
    0011 
   0000 
  0011 
 0000 
-------- 
00001111 

Above we multiply 3 and 5 to produce 15. This was accomplished by multiplying the first value (0011) 
against each digit of the second value (0101). Each product is shifted to the left to align it with the digit 
we multiplied with. The space to the right of the shifted value is filled in with 0’s, which are not shown 
for clarity. The shifted values are added up to produce the answer, which may require up to 8-bits (in 
general the product of two n-bit numbers is a 2n-bit number). 

This technique suggests a very simple circuit. Consider multiplying two 8-bit numbers. That means 
we’ll produce 8 products that need to be shifted and added up. We can tally 8 numbers by hooking 
together 8 multi-bit adders. That will use an excessive number of relays, but it will work. We’ll use 16-
bit adders and we’ll accomplish the shifting by wiring the first 8-bit number to different shifted positions 
on each adder. So, each adder will accept a shifted number and a partial tally. But, we only want to add 
if the associated digit in the second number is a 1; otherwise, we want to leave the tally as it is. We’ll 
start out by building an adder with that property: 

# 1-bit adder 
def mAdder add carryInNeg carryIn a b carryOutNeg carryOut sum : 
  trans add b s 
  zuseFullAdder carryInNeg carryIn a s carryOutNeg carryOut sum 

mAdder is built around the zuseFullAdder discussed above. The only difference is an extra input called 
“add”. When add is 1, it sums a and b. When add is 0, it sums a and 0. This is accomplished by 
connecting b to the zuseFullAdder through a transmission gate that is controlled by the add input. 
Here, a represents a digit of the tally and b represents a digit of the shifted number. The add input is 
actually a digit of the second number to be multiplied. Let’s double-up this up to 16-bits: 

# 2-bit adder 
def mAdder2 add carryInNeg carryIn a1 a0 b1 b0 carryOutNeg carryOut s1 s0 : 
  mAdder add carryInNeg carryIn a0 b0 cOutNeg cOut s0  
  mAdder add cOutNeg cOut a1 b1 carryOutNeg carryOut s1 
   
# 4-bit adder 
def mAdder4 add carryInNeg carryIn a3 a2 a1 a0 b3 b2 b1 b0  
    carryOutNeg carryOut s3 s2 s1 s0 : 
  mAdder2 add carryInNeg carryIn a1 a0 b1 b0 cOutNeg cOut s1 s0  
  mAdder2 add cOutNeg cOut a3 a2 b3 b2 carryOutNeg carryOut s3 s2 
 
# 8-bit adder 
def mAdder8 add  
    carryInNeg carryIn   a7 a6 a5 a4 a3 a2 a1 a0  
                         b7 b6 b5 b4 b3 b2 b1 b0  
    carryOutNeg carryOut s7 s6 s5 s4 s3 s2 s1 s0 : 



  mAdder4 add carryInNeg carryIn a3 a2 a1 a0 b3 b2 b1 b0  
      cOutNeg cOut s3 s2 s1 s0  
  mAdder4 add cOutNeg cOut a7 a6 a5 a4 b7 b6 b5 b4  
      carryOutNeg carryOut s7 s6 s5 s4   
 
# 16-bit adder 
def mAdder16 add  
    carryInNeg carryIn   a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0  
                         b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0  
    carryOutNeg carryOut s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0 : 
  mAdder8 add carryInNeg carryIn a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4 b3 b2 b1 b0 
      cOutNeg cOut s7 s6 s5 s4 s3 s2 s1 s0  
  mAdder8 add cOutNeg cOut  
      a15 a14 a13 a12 a11 a10 a9 a8 b15 b14 b13 b12 b11 b10 b9 b8  
      carryOutNeg carryOut s15 s14 s13 s12 s11 s10 s9 s8 

To make a multiplier, we need to hook up 8 of them like this: 

def multiplier  
    a7 a6 a5 a4 a3 a2 a1 a0  
    b7 b6 b5 b4 b3 b2 b1 b0 
    p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 : 
  mAdder16 b0 1 0  
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
      0 0 0 0 0 0 0 0 a7 a6 a5 a4 a3 a2 a1 a0 
      0 0 d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 
  mAdder16 b1 1 0  
      d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 
      0 0 0 0 0 0 0 a7 a6 a5 a4 a3 a2 a1 a0 0 
      0 0 e15 e14 e13 e12 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 e0 
  mAdder16 b2 1 0  
      e15 e14 e13 e12 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 e0 
      0 0 0 0 0 0 a7 a6 a5 a4 a3 a2 a1 a0 0 0 
      0 0 f15 f14 f13 f12 f11 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 
  mAdder16 b3 1 0  
      f15 f14 f13 f12 f11 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 
      0 0 0 0 0 a7 a6 a5 a4 a3 a2 a1 a0 0 0 0 
      0 0 g15 g14 g13 g12 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 
  mAdder16 b4 1 0  
      g15 g14 g13 g12 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 
      0 0 0 0 a7 a6 a5 a4 a3 a2 a1 a0 0 0 0 0 
      0 0 h15 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0 
  mAdder16 b5 1 0  
      h15 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0 
      0 0 0 a7 a6 a5 a4 a3 a2 a1 a0 0 0 0 0 0 
      0 0 i15 i14 i13 i12 i11 i10 i9 i8 i7 i6 i5 i4 i3 i2 i1 i0 
  mAdder16 b6 1 0  
      i15 i14 i13 i12 i11 i10 i9 i8 i7 i6 i5 i4 i3 i2 i1 i0 
      0 0 a7 a6 a5 a4 a3 a2 a1 a0 0 0 0 0 0 0 
      0 0 j15 j14 j13 j12 j11 j10 j9 j8 j7 j6 j5 j4 j3 j2 j1 j0 
  mAdder16 b7 1 0  
      j15 j14 j13 j12 j11 j10 j9 j8 j7 j6 j5 j4 j3 j2 j1 j0 
      0 a7 a6 a5 a4 a3 a2 a1 a0 0 0 0 0 0 0 0 
      0 0 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 

The first mAdder16 starts out with a tally of 0 and adds A. The second mAdder16 takes the partial tally 
from the first mAdder16 and adds A shifted 1 digit to the left. The third mAdder16 takes the partial tally 
from the second mAdder16 and adds A shifted 2 digits to the left, and so on. Note that the add input of 



each mAdder16 is a separate digit of B, controlling when to add the shifted A and when to leave the tally 
alone (it adds 0 instead of the shifted A). 

Now, let’s test it out. Let’s multiply 100 (01100100) and 200 (11001000) to produce the product 20,000 
(0100111000100000): 

# 100 x 200 = 20,000 
run 100 1 multiplier  
    0 1 1 0 0 1 0 0 
    1 1 0 0 1 0 0 0     
    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

Here's the output: 

$ ./tofu < multiplier.tofu 
Build complete: 1152 components, 1506 nodes. 
1: 0000000000000000 
3: 0011001000000000 
4: 0100101100000000 
7: 0100111000100000 

It consumed a lot of relays, but at least it’s really fast. 

What about signed numbers? When people multiply multi-digit numbers on paper, they initially ignore 
the signs and compute the product of 2 positive numbers. Then the 2 signs are taken into account to give 
the product the appropriate sign. We can apply that technique here as well. We can use the sign bit (the 
left-most bit) of each number to determine if we need to negate the number, perform the multiplication 
with positive numbers and use the sign bits again to determine if we need to negate the product. To 
negate a value, we can use our adderSubtractor. For a some value A, we’ll compute 0 – A when A is 
negative and we’ll compute 0 + A when A is positive. The adderSubtractor defined above was 
designed for 8-bit numbers. We’ll need a 16-bit version: 

# 16-bit Partial Adder/Subtractor 
def xFullAdder16 subtract carryInNeg carryIn  
                         a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 
                         b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 
    carryOutNeg carryOut s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0 : 
  xFullAdder8 subtract carryInNeg carryIn  
      a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4 b3 b2 b1 b0  
      cOutNeg cOut s7 s6 s5 s4 s3 s2 s1 s0  
  xFullAdder8 subtract cOutNeg cOut  
      a15 a14 a13 a12 a11 a10 a9 a8 b15 b14 b13 b12 b11 b10 b9 b8  
      carryOutNeg carryOut s15 s14 s13 s12 s11 s10 s9 s8 
 
# 16-bit Adder/Subtractor 
def adderSubtractor16 subtract 
             a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 
             b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0     
    carryOut s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0 : 
  inv subtract carryInNeg 
  xFullAdder16 subtract carryInNeg subtract  
                       a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 
                       b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 
      carryOutNeg cOut s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0 
  xor cOut subtract carryOut 



We’ll use it to wrap the multiplier to provide signed multiplication: 

def signedMultiplier signed 
    a7 a6 a5 a4 a3 a2 a1 a0  
    b7 b6 b5 b4 b3 b2 b1 b0 
    p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 : 
  and signed a7 negateA 
  and signed b7 negateB   
  adderSubtractor negateA 0 0 0 0 0 0 0 0  
      a7 a6 a5 a4 a3 a2 a1 a0 0 c7 c6 c5 c4 c3 c2 c1 c0 
  adderSubtractor negateB 0 0 0 0 0 0 0 0  
      b7 b6 b5 b4 b3 b2 b1 b0 0 d7 d6 d5 d4 d3 d2 d1 d0 
  multiplier  
      c7 c6 c5 c4 c3 c2 c1 c0  
      d7 d6 d5 d4 d3 d2 d1 d0 
      q15 q14 q13 q12 q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 q0 
  xor a7 b7 negateProduct 
  and signed negateProduct negateQ 
  adderSubtractor16 negateQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      q15 q14 q13 q12 q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 q0 
      0 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 

Note the extra signed input. When signed is 1, it treats A and B as signed numbers. The 
adderSubtractors negate A and B when signed is 1 and their sign bits are 1. The values are fed into 
the multiplier, which produces the product Q. Q is negated when signed is 1 and the sign bits of A and 
B don’t match. That check is done with an XOR gate. Now, let’s run a few tests: 

# 3 x 5 = 15 
run 100 1 signedMultiplier 1 
    0 0 0 0 0 0 1 1 
    0 0 0 0 0 1 0 1         
    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 
Build complete: 1489 components, 1954 nodes. 
1: 0000000000000000 
12: 0000000000001100 
14: 0000000000001111 
 
# -3 x 5 = -15 
run 100 1 signedMultiplier 1 
    1 1 1 1 1 1 0 1 
    0 0 0 0 0 1 0 1         
    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 
Build complete: 1489 components, 1949 nodes. 
1: 0000000000000000 
3: 0000000000000001 
5: 0000000000000000 
12: 1111111111110100 
14: 1111111111110001 
 
# 3 x -5 = -15 
run 100 1 signedMultiplier 1 
    0 0 0 0 0 0 1 1 
    1 1 1 1 1 0 1 1         
    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 
Build complete: 1489 components, 1949 nodes. 



1: 0000000000000000 
3: 0000000000000001 
5: 0000000000000000 
7: 1111111010000000 
8: 1111111101000000 
9: 1111111110100000 
10: 1111111111010000 
11: 1111111111101000 
12: 1111111111110100 
13: 1111111111110001 
14: 1111111111110100 
15: 1111111111110001 
 
# -3 x -5 = 15 
run 100 1 signedMultiplier 1 
    1 1 1 1 1 1 0 1 
    1 1 1 1 1 0 1 1         
    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 
Build complete: 1489 components, 1944 nodes. 
1: 0000000000000000 
7: 0000000110000000 
8: 0000000011000000 
9: 0000000001100000 
10: 0000000000110000 
11: 0000000000011000 
12: 0000000000001100 
13: 0000000100001010 
14: 0000000000001100 
15: 0000000000001111 
 
# 255 x 255 = 65025 
run 100 1 signedMultiplier 0 
    1 1 1 1 1 1 1 1 
    1 1 1 1 1 1 1 1         
    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 
Build complete: 1489 components, 1943 nodes. 
1: 0000000000000000 
7: 0111111110000000 
8: 1011111101000000 
9: 1101111100100000 
10: 1110111100010000 
11: 1111011100001000 
12: 1111101100000100 
13: 1111110100000010 
14: 1111111000000001 
 
# -1 x -1 = 1 
run 100 1 signedMultiplier 1 
    1 1 1 1 1 1 1 1 
    1 1 1 1 1 1 1 1         
    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 
Build complete: 1489 components, 1942 nodes. 
1: 0000000000000000 
15: 0000000000000001 

We can build a multiplier with fewer relays by reusing the same adder for all the additions. A state 



machine will govern the 8 additions and shifts necessary to multiply two 8-bit values. We’ll start out by 
constructing an 8-input OR gate that’ll come in handy later: 

# 4-input OR gate 
def or4 i3 i2 i1 i0 o : 
  or i3 i2 o 
  or i1 i0 o 
 
# 8-input OR gate 
def or8 i7 i6 i5 i4 i3 i2 i1 i0 o : 
  or4 i7 i6 i5 i4 o 
  or4 i3 i2 i1 i0 o 

It’s effectively equivalent to 8 buffers in parallel. 

When you multiply 2 binary numbers by hand, as shown in the example above, you multiple the first 
number against each digit of the second number and you write down those products such that they align 
with the digit you multiplied by. At the end, you add them all up. 

    0011 
  x 0101 
    ---- 
    0011 
   0000 
  0011 
 0000 
-------- 
00001111 

An alternative way is to keep a running tally. Meaning, after the single digit multiplication, add the 
product to the running tally then shift to keep things aligned: 

1 x 0011 = 0011 
         + 0000 
         ------ 
          00011 
  
0 x 0011 = 0000 
         + 00011 
           ----- 
          000011 
 
1 x 0011 = 0011 
         + 000011 
           ------ 
          0001111 
 
0 x 0011 = 0000 
         + 0001111 
           ------- 
          00001111 

Each addition actually produces 1 digit of the final answer (the right-most digit). After the addition that 
digit won’t be touched. This means that to multiple two n-bit numbers, we only need an n-bit adder as 
opposed to a 2n-bit adder. Also, note that each addition produces a carry (in this case all the carry bits 
were zero). We need to include that when we shift.



To multiply two 8-bit numbers, A and B, we’ll use a 16-bit register constructed out of 16 flip flops. 
First, we’ll copy B onto the lower 8-bits of the register. The upper 8-bits will contain the running tally, 
which starts out as 0. We need to multiply A times each bit of B, adding to our tally and shifting as we 
go. Each time the register is right-shifted, a bit of B disappears and the right-most bit of the register 
contains the next bit of B. So, we’ll use the right-most bit of the register to control the adder. When the 
right-most bit is 1, we’ll add A to the tally. When the right-most bit is 0, we’ll leave the tally as it is. 

 

We’ll construct the multiplier definition in pieces. First, the 16-bit register: 

def multiplier2  
    a7 a6 a5 a4 a3 a2 a1 a0  
    b7 b6 b5 b4 b3 b2 b1 b0 
    p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 : 
 
  # 16-bit register made of flip flops 
  flipFlop c d15 p15  
  flipFlop c d14 p14 
  flipFlop c d13 p13 
  flipFlop c d12 p12 
  flipFlop c d11 p11 
  flipFlop c d10 p10 
  flipFlop c d9 p9 
  flipFlop c d8 p8 
  flipFlop c d7 p7 
  flipFlop c d6 p6 
  flipFlop c d5 p5 
  flipFlop c d4 p4 
  flipFlop c d3 p3 
  flipFlop c d2 p2 
  flipFlop c d1 p1 
  flipFlop c d0 p0 

The register is updated each time the clock drops from 1 to 0. So, for each clock cycle, if we fail to 
expose the data input bits to some value, the register will erase itself (all bits will become 0). We’ll 
expose the data input bits to different values using transmission gates. The enable signals for the 
transmission gates will be governed by a state machine. 

To get B into the lower 8 bits of the register, we’ll use an 8-bit transmission gate. We define a signal 
called loadB. When loadB is 1, B is exposed to the lower 8 data input bits of the register. Since the 
transmission gate won’t touch the upper 8 bits of the register, when the clock drops from 1 to 0, those 
bits will become zero. 



  trans8 loadB d7 d6 d5 d4 d3 d2 d1 d0 b7 b6 b5 b4 b3 b2 b1 b0 

The right-most bit of the register, p0, acts a signal to control an 8-bit adder. When p0 is 1, the adder adds 
A to the upper 8-bits of the register (the running tally). When p0 is 0, the adder adds 0 to the upper 8-
bits of the register. We’ll do this with another 8-bit transmission gate: 

  trans8 p0 a7 a6 a5 a4 a3 a2 a1 a0 z7 z6 z5 z4 z3 z2 z1 z0 
  zuseAdder8 1 0 p15 p14 p13 p12 p11 p10 p9 p8 z7 z6 z5 z4 z3 z2 z1 z0 
      0 s8 s7 s6 s5 s4 s3 s2 s1 s0 

Note that s8 is the carry bit. Now, what to do with that sum? It needs to be exposed to the data input bits 
of the register and we need to shift the register. Both can be accomplished with a 16-bit transmission 
gate. We define a signal called tallyShift that will replace the upper 9 bits of the register with the 
carry and the 8 sum bits and shift the remaining bits to the right. The right-most bit will disappear. 

  trans16 tallyShift d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0  
      s8 s7 s6 s5 s4 s3 s2 s1 s0 p7 p6 p5 p4 p3 p2 p1 

Finally, we need a state machine to control the operation. We need to assert the loadB signal once and 
then assert tallyShift signal 8 times. This is when the 8-bit OR gate will find its purpose: 

  # State machine  
  flipFlop c 1 boot 
  inv boot loadB 
  flipFlop c loadB state1 
  flipFlop c state1 state2 
  flipFlop c state2 state3 
  flipFlop c state3 state4 
  flipFlop c state4 state5 
  flipFlop c state5 state6 
  flipFlop c state6 state7 
  flipFlop c state7 state8 
  flipFlop c state8 keepValue 
  or8 state1 state2 state3 state4 state5 state6 state7 state8 tallyShift 
  buf keepValue keepValue 

Each state is represented by the output of an individual flip flop. First, the inverter asserts the loadB 
signal. On the successive clock cycle, the flip flop driving the inverter forces loadB to 0. But, the next 
flip flop in the chain turns on the state1 signal and so on. The 8 state signals are combined together 
with the 8-bit OR gate to control the tallyShift signal. The final signal to be asserted is called 
keepValue. In fact, a buffer forces keepValue to remain asserted indefinitely. It’s used to prevent the 
register from erasing itself after the multiplication is complete. Here’s the transmission gate does this 
final task: 

  trans16 keepValue d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 
      p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 

Here’s the complete listing: 

def multiplier2  
    a7 a6 a5 a4 a3 a2 a1 a0  
    b7 b6 b5 b4 b3 b2 b1 b0 
    p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 : 
 



  # 16-bit register made of flip flops 
  flipFlop c d15 p15  
  flipFlop c d14 p14 
  flipFlop c d13 p13 
  flipFlop c d12 p12 
  flipFlop c d11 p11 
  flipFlop c d10 p10 
  flipFlop c d9 p9 
  flipFlop c d8 p8 
  flipFlop c d7 p7 
  flipFlop c d6 p6 
  flipFlop c d5 p5 
  flipFlop c d4 p4 
  flipFlop c d3 p3 
  flipFlop c d2 p2 
  flipFlop c d1 p1 
  flipFlop c d0 p0 
 
  # Transmission gates and 8-bit adder 
  trans8 loadB d7 d6 d5 d4 d3 d2 d1 d0 b7 b6 b5 b4 b3 b2 b1 b0 
  trans8 p0 a7 a6 a5 a4 a3 a2 a1 a0 z7 z6 z5 z4 z3 z2 z1 z0 
  zuseAdder8 1 0 p15 p14 p13 p12 p11 p10 p9 p8 z7 z6 z5 z4 z3 z2 z1 z0 
      0 s8 s7 s6 s5 s4 s3 s2 s1 s0  
  trans16 tallyShift d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0  
      s8 s7 s6 s5 s4 s3 s2 s1 s0 p7 p6 p5 p4 p3 p2 p1 
  trans16 keepValue d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 
      p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 
 
  # State machine  
  flipFlop c 1 boot 
  inv boot loadB 
  flipFlop c loadB state1 
  flipFlop c state1 state2 
  flipFlop c state2 state3 
  flipFlop c state3 state4 
  flipFlop c state4 state5 
  flipFlop c state5 state6 
  flipFlop c state6 state7 
  flipFlop c state7 state8 
  flipFlop c state8 keepValue 
  or8 state1 state2 state3 state4 state5 state6 state7 state8 tallyShift 
  buf keepValue keepValue 

Now, let’s test it out: 

# 170 x 105 = 17850 
run 1000 3 multiplier2 
    1 0 1 0 1 0 1 0 
    0 1 1 0 1 0 0 1      
    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

Here's the output: 

$ ./tofu < multiplier2.tofu 
Build complete: 226 components, 321 nodes. 
1: 0000000000000000 
5: 0000000001101001 
11: 0101010100110100 



17: 0010101010011010 
23: 0001010101001101 
29: 0101111110100110 
35: 0010111111010011 
41: 0110110011101001 
47: 1000101101110100 
53: 0100010110111010 
54: 0110011111111111 
55: 0100010110111010 

As with the original multiplier, we can wrap this one to produce a signed multiplier: 

def signedMultiplier2 signed 
    a7 a6 a5 a4 a3 a2 a1 a0  
    b7 b6 b5 b4 b3 b2 b1 b0 
    p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 : 
  and signed a7 negateA 
  and signed b7 negateB   
  adderSubtractor negateA 0 0 0 0 0 0 0 0  
      a7 a6 a5 a4 a3 a2 a1 a0 0 c7 c6 c5 c4 c3 c2 c1 c0 
  adderSubtractor negateB 0 0 0 0 0 0 0 0  
      b7 b6 b5 b4 b3 b2 b1 b0 0 d7 d6 d5 d4 d3 d2 d1 d0 
  multiplier2  
      c7 c6 c5 c4 c3 c2 c1 c0  
      d7 d6 d5 d4 d3 d2 d1 d0 
      q15 q14 q13 q12 q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 q0 
  xor a7 b7 negateProduct 
  and signed negateProduct negateQ 
  adderSubtractor16 negateQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      q15 q14 q13 q12 q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 q0 
      0 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0 

Dividers 
Division is the inverse of multiplication. A divided by B produces P remainder Q. Formally, A, B, P and 
Q are known as the dividend, divisor, quotient and remainder respectively. They are associated by the 
following equation: 

A = P × B + Q 

The previous section showed that the product of two 8-bit numbers is a 16-bit number. Perhaps, A 
should be 16-bits and B, P and Q should be 8-bits. But, consider dividing a 16-bit number by 1. The 
result is the initial 16-bit value. All four quantities need to have the same number of bits to make this 
work. For simplicity, we’ll construct an 8-bit divider. 

We’ll create a circuit that performs binary long division on 2 positive integers. Binary and decimal long 
division share the same basic technique, but it’s actually a little easier to do in binary. First, let’s use an 
example to review long division in decimal: 

   028R9 
12/345 
  -0↓ 
   34 
  -24↓ 
   105 



  - 96 
     9 

In elementary school, we’re taught that long division involves guessing and subtraction. It’s an iterative 
process that produces 1 digit of the quotient per iteration. We start out by examining the left-most digit 
of the dividend, which is 3 in this case. We ask ourselves, what is the largest single-digit number when 
multiplied by the divisor doesn’t exceed the left-most digit of the dividend? This is the guessing step. 
Since 3 < 12, the first digit of the quotient is 0. Then we write the product of that value and the divisor, 
which is also 0, under the left-most digit. Next, we subtract and we append the next digit of the dividend 
to the end of the difference, producing 34. The second iteration uses that value. What’s the largest 
single-digit number when multiplied by 12 doesn’t exceed 34? I guess 2. If I’m wrong, I’ll find out 
when I do the subtraction. If the difference is negative, then I guessed too high. If the difference is 
greater-than 12, then I guessed too low. Clearly, long division tends to exercise the pink erasers at the 
end of No. 2 pencils. 12 times 2 is 24 and 34 minus 24 is 10. I complete the second iteration by 
appending the final digit of the quotient, creating 105. The next iteration will be last. We know this 
because all the digits of the quotient have been consumed in the earlier iterations. Through guessing, we 
find that 8 is the last digit of the quotient and 8 times 12 is 96. The final subtraction produces the 
remainder. 

To convert this algorithm into a circuit, we’ll need to formalize the guessing step. The step involves 
guessing 1 digit of the quotient. Meaning, in decimal, we choose from among 10 possibilities. We can 
systematically try them all out starting with the highest possible value, 9, and work our way down until 
we find a difference that is not negative. That process is a lot easier in binary since there are only 2 
possible values for a digit. We try the value 1 and if the difference is negative, then the digit must be 0. 
Here’s an example of long division in binary: 

   0100R10 
11/1110 
   0↓     
   11 
  -11↓ 
    01 
   - 0↓ 
     10 
    - 0 
     10 

The division circuit will contain a register with twice the number of bits necessary to store the dividend. 
The dividend will initially be loaded onto the right-most bits. The binary long division example above 
deals with a 4-bit dividend. We would load it onto an 8-bit register like this: 

00001110 

We’ll position the divisor under the register to expose it to the first digit of the dividend: 

00001110 
-0011 
 1110 

The subtraction only involves those 4 digits directly above the divisor. In this case, the subtraction 
produced a negative value (the sign bit (the left most bit) of the difference is a 1). The first digit of the 
quotient must be 0. On paper, we would move the divisor to the right to expose it to the next digit of the 
dividend. But, we can achieve the same effect by shifting the register to the left. Left-shifting produces 



empty space to the right of the dividend. We’ll actually use that space to store the digits of quotient as 
we generate them. Since the first digit is 0, we left-shift and shift in a 0: 

00011100 

The next subtraction looks like this: 

00011100  
-0011 
 0000 

The difference is positive. This is a subtraction we want to keep. We replace the digits directly above the 
subtraction with the difference, which in this case is all 0’s: 

00000100 

Then, we left-shift to expose the divisor to the next digit of the dividend. This time we shift in 1 since 
the subtraction produced a positive result. 

00001001 
-0011 
 1110 

The third difference is negative. As before, we left-shift and shift in a 0: 

00010010 

The final subtraction is as follows: 

00010010 
-0011 
 1111 

Again, the result is negative. So, we left-shift and shift in 0: 

00100100 

The right 4 digits is the quotient. It was produced by shifting in one digit at a time. The left 4 digits is 
the remainder. It was generated by the final subtraction. 

There’s one more thing we need to take into account: division by zero. It’s not allowed. If the divisor is 
zero, we’ll set an error flag instead of dividing. 

We’ll start out the definition of the divider like this: 

# Divider (A = Dividend, B = Divisor, P = Quotient, Q = Remainder) 
def divider  
    a7 a6 a5 a4 a3 a2 a1 a0 
    b7 b6 b5 b4 b3 b2 b1 b0 
    divideByZeroError 
    p7 p6 p5 p4 p3 p2 p1 p0 
    q7 q6 q5 q4 q3 q2 q1 q0 : 



A and B are dividend and divisor respectively. divideByZeroError is an output terminal that will be set 
to 1 if B is 0. The quotient and remainder, P and Q respectively, will ultimately be stored in a 16-bit 
register with the quotient to the right of the remainder: 

  # 16-bit register made of flip flops 
  flipFlop c d15 q7  
  flipFlop c d14 q6 
  flipFlop c d13 q5 
  flipFlop c d12 q4 
  flipFlop c d11 q3 
  flipFlop c d10 q2 
  flipFlop c d9 q1 
  flipFlop c d8 q0 
  flipFlop c d7 p7 
  flipFlop c d6 p6 
  flipFlop c d5 p5 
  flipFlop c d4 p4 
  flipFlop c d3 p3 
  flipFlop c d2 p2 
  flipFlop c d1 p1 
  flipFlop c d0 p0 

We’ll use an 8-bit transmission gate to load A into the lower bits of the register. It will be triggered by a 
signal called loadA, which will be asserted at the right time by a state machine. 

  trans8 loadA d7 d6 d5 d4 d3 d2 d1 d0 a7 a6 a5 a4 a3 a2 a1 a0 

We’ll compute the differences using an adderSubtractor stuck in subtract mode. As in the binary long 
division example above, the subtract does not include the left-most digit of the register. Rather, it starts 
with the digit to the right of the left-most digit. 

  adderSubtractor 1 q6 q5 q4 q3 q2 q1 q0 p7 b7 b6 b5 b4 b3 b2 b1 b0 
      0 s7 s6 s5 s4 s3 s2 s1 s0 

After loading A into the register, we iterate 8 times. The state machine will assert a signal called shift 
while iterating. Each iteration involves a subtraction. When s7 is 1, the difference is negative. We’ll 
derive positive and negative signals from s7 as follows: 

  inv s7 s7Neg 
  and shift s7 negative 
  and shift s7Neg positive 

When the difference is negative, we need to left-shift and shift in a 0. We’ll do this with a 16-bit 
transmission gate: 

  trans16 negative d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 
      q6 q5 q4 q3 q2 q1 q0 p7 p6 p5 p4 p3 p2 p1 p0 0 

When the difference is positive, we want to replace the digits directly above the subtraction with the 
difference value. Note that the adderSubtractor consumed p7. Then, we left-shift and shift in a 1. 
Both can be accomplished with a 16-bit transmission gate: 

  trans16 positive d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 
      s7 s6 s5 s4 s3 s2 s1 s0 p6 p5 p4 p3 p2 p1 p0 1 



We need one more transmission gate to prevent the flip flop from erasing itself after the division is 
completed: 

  trans16 keepValue d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 
      q7 q6 q5 q4 q3 q2 q1 q0 p7 p6 p5 p4 p3 p2 p1 p0 

We’ll set the divideByZeroError output terminal using an 8-bit OR gate and an inverter, effectively 
producing a NOR gate: 

  or8 b7 b6 b5 b4 b3 b2 b1 b0 divideByZeroErrorNeg 
  inv divideByZeroErrorNeg divideByZeroError 

Finally, here is the state machine that controls the transmission gates: 

  flipFlop c 1 boot 
  inv boot bootNeg 
  trans divideByZeroErrorNeg bootNeg loadA 
  flipFlop c loadA state1 
  flipFlop c state1 state2 
  flipFlop c state2 state3 
  flipFlop c state3 state4 
  flipFlop c state4 state5 
  flipFlop c state5 state6 
  flipFlop c state6 state7 
  flipFlop c state7 state8 
  flipFlop c state8 keepValue 
  or8 state1 state2 state3 state4 state5 state6 state7 state8 shift 
  buf keepValue keepValue 

It’s very similar to the state machine in the multiplier. The only difference is that a transmission gate 
prevents it from making progress when there is a division by zero error. 

Here is the complete listing: 

# Divider (A = Dividend, B = Divisor, P = Quotient, Q = Remainder) 
def divider  
    a7 a6 a5 a4 a3 a2 a1 a0 
    b7 b6 b5 b4 b3 b2 b1 b0 
    divideByZeroError 
    p7 p6 p5 p4 p3 p2 p1 p0 
    q7 q6 q5 q4 q3 q2 q1 q0 : 
 
  # 16-bit register made of flip flops 
  flipFlop c d15 q7  
  flipFlop c d14 q6 
  flipFlop c d13 q5 
  flipFlop c d12 q4 
  flipFlop c d11 q3 
  flipFlop c d10 q2 
  flipFlop c d9 q1 
  flipFlop c d8 q0 
  flipFlop c d7 p7 
  flipFlop c d6 p6 
  flipFlop c d5 p5 
  flipFlop c d4 p4 
  flipFlop c d3 p3 



  flipFlop c d2 p2 
  flipFlop c d1 p1 
  flipFlop c d0 p0 
 
  # Transmission gates and 8-bit subtractor 
  trans8 loadA d7 d6 d5 d4 d3 d2 d1 d0 a7 a6 a5 a4 a3 a2 a1 a0 
  trans16 positive d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 
      s7 s6 s5 s4 s3 s2 s1 s0 p6 p5 p4 p3 p2 p1 p0 1 
  trans16 negative d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 
      q6 q5 q4 q3 q2 q1 q0 p7 p6 p5 p4 p3 p2 p1 p0 0 
  trans16 keepValue d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 
      q7 q6 q5 q4 q3 q2 q1 q0 p7 p6 p5 p4 p3 p2 p1 p0 
  adderSubtractor 1 q6 q5 q4 q3 q2 q1 q0 p7 b7 b6 b5 b4 b3 b2 b1 b0 
      0 s7 s6 s5 s4 s3 s2 s1 s0 
  inv s7 s7Neg 
  and shift s7 negative 
  and shift s7Neg positive 
 
  # Divide-by-zero check 
  or8 b7 b6 b5 b4 b3 b2 b1 b0 divideByZeroErrorNeg 
  inv divideByZeroErrorNeg divideByZeroError 
 
  # State machine 
  flipFlop c 1 boot 
  inv boot bootNeg 
  trans divideByZeroErrorNeg bootNeg loadA 
  flipFlop c loadA state1 
  flipFlop c state1 state2 
  flipFlop c state2 state3 
  flipFlop c state3 state4 
  flipFlop c state4 state5 
  flipFlop c state5 state6 
  flipFlop c state6 state7 
  flipFlop c state7 state8 
  flipFlop c state8 keepValue 
  or8 state1 state2 state3 state4 state5 state6 state7 state8 shift 
  buf keepValue keepValue 

Now, let’s test it out: 

run 1000 5 divider  
    0 0 0 0 1 1 1 0  
    0 0 0 0 0 0 1 1 
    ? 
    ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? 

Here's the result: 

$ ./tofu < divider.tofu 
Build complete: 268 components, 376 nodes. 
1: 10000000000000000 
3: 00000000000000000 
7: 00000111000000000 
17: 00001110000000000 
27: 00011100000000000 
37: 00111000000000000 
47: 01110000000000000 



57: 01100000000000001 
67: 01000000100000000 
70: 01000000101111111 
71: 01000000100000000 
77: 00000001000000001 
87: 00000010000000010 
88: 01111111111111111 
90: 00000010000000010 

The result consists of 3 parts: divideByZeroError, quotient and remainder (quotient is to the left of 
remainder because that’s what specified in the def statement; it’s reversed in the regisiter): 

0 00000100 00000010 

Let’s try dividing by zero: 

run 1000 5 divider  
    0 0 0 0 1 1 1 0  
    0 0 0 0 0 0 0 0 
    ? 
    ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? 
 
Build complete: 268 components, 378 nodes. 
1: 10000000000000000 

As you can see, the divideByZeroError output terminal is asserted. 

This divider assumes that the dividend and the divisor are positive values. As with the multiplier, we can 
wrap the divider to allow it handle signed inputs. For signed division, the quotient is signed when the 
signs of the dividend and the divisor don’t match. We can check that with an XOR gate. The sign of the 
remainder is set to agree with the dividend. 

def signedDivider signed 
    a7 a6 a5 a4 a3 a2 a1 a0 
    b7 b6 b5 b4 b3 b2 b1 b0 
    divideByZeroError 
    p7 p6 p5 p4 p3 p2 p1 p0 
    q7 q6 q5 q4 q3 q2 q1 q0 : 
  and signed a7 negateA 
  and signed b7 negateB   
  adderSubtractor negateA 0 0 0 0 0 0 0 0  
      a7 a6 a5 a4 a3 a2 a1 a0 0 c7 c6 c5 c4 c3 c2 c1 c0 
  adderSubtractor negateB 0 0 0 0 0 0 0 0  
      b7 b6 b5 b4 b3 b2 b1 b0 0 d7 d6 d5 d4 d3 d2 d1 d0 
  divider  
      c7 c6 c5 c4 c3 c2 c1 c0  
      d7 d6 d5 d4 d3 d2 d1 d0 
      divideByZeroError 
      x7 x6 x5 x4 x3 x2 x1 x0 
      y7 y6 y5 y4 y3 y2 y1 y0 
  xor a7 b7 negateQuotient 
  and signed negateQuotient negateQ 
  adderSubtractor negateQ 0 0 0 0 0 0 0 0 
      x7 x6 x5 x4 x3 x2 x1 x0 0 p7 p6 p5 p4 p3 p2 p1 p0 
  adderSubtractor a7 0 0 0 0 0 0 0 0 
      y7 y6 y5 y4 y3 y2 y1 y0 0 q7 q6 q5 q4 q3 q2 q1 q0 



When we test the signed divider, we actually need to slow down the clock slightly to ensure that the 
inputs are properly negated before being passed into the unsigned divider. 

run 1000 6 signedDivider 1  
    0 0 0 0 1 1 1 0  
    0 0 0 0 0 0 1 1 
    ? 
    ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? 
 
Build complete: 608 components, 827 nodes. 
1: 10000000000000000 
5: 00000000000000000 
10: 00000111000000000 
22: 00001110000000000 
34: 00011100000000000 
46: 00111000000000000 
58: 01110000000000000 
70: 01100000000000001 
82: 01000000100000000 
85: 01000000101111111 
86: 01000000100000000 
94: 00000001000000001 
106: 00000010000000010 
107: 01111111111111111 
109: 00000010000000010 
 
run 1000 6 signedDivider 1  
    1 1 1 1 0 0 1 0 
    0 0 0 0 0 0 1 1 
    ? 
    ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? 
 
Build complete: 608 components, 825 nodes. 
1: 10000000000000001 
3: 10000000100000000 
5: 00000000000000000 
10: 01111001000000000 
22: 01110010000000000 
34: 01100100000000000 
46: 01001000000000000 
58: 00010000000000000 
70: 00100000011111111 
82: 00111111100000000 
85: 00111111110000001 
86: 00111111100000000 
94: 01111111011111111 
106: 01111110011111110 
107: 00000000100000001 
109: 01111110011111110 
 
run 1000 6 signedDivider 1  
    0 0 0 0 1 1 1 0  
    1 1 1 1 1 1 0 1 
    ? 
    ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? 
 



Build complete: 608 components, 822 nodes. 
1: 10000000000000000 
3: 10000000100000000 
4: 00000000100000000 
5: 00000000000000000 
10: 01111001000000000 
22: 01110010000000000 
34: 01100100000000000 
46: 01001000000000000 
58: 00010000000000000 
70: 00100000000000001 
82: 00111111100000000 
85: 00111111101111111 
86: 00111111100000000 
94: 01111111000000001 
106: 01111110000000010 
107: 00000000111111111 
109: 01111110000000010 
 
run 1000 6 signedDivider 1  
    1 1 1 1 0 0 1 0 
    1 1 1 1 1 1 0 1 
    ? 
    ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? 
 
Build complete: 608 components, 820 nodes. 
1: 10000000000000001 
3: 10000000000000000 
4: 00000000000000000 
10: 00000111000000000 
22: 00001110000000000 
34: 00011100000000000 
46: 00111000000000000 
58: 01110000000000000 
70: 01100000011111111 
82: 01000000100000000 
85: 01000000110000001 
86: 01000000100000000 
94: 00000001011111111 
106: 00000010011111110 
107: 01111111100000001 
109: 00000010011111110 

A Relay Computer 
Professor Harry Porter at Portland State University built the ultimate retrocomputing project. He 
designed and constructed a simple CPU using a meager 415 four-pole double-throw relays. Read about 
it here: 

http://web.cecs.pdx.edu/~harry/Relay/ 

I decided build a relay-level simulation of his machine using Tofu. On his web page, you’ll find a 
PowerPoint presentation describing the relay circuits he used and his computer’s architecture. You’ll 
also find detailed commentary on the machine’s instruction set including sample programs. 
Unfortunately, the documents leave many gaps, the most significant of which are the circuits he used to 
construct his state machine. My machine is not a perfect clone of his, but it’s able to run his programs.



Harry Porter’s computer does not support subtraction, let alone multiplication or division. However, 
those functions can be created in software. Here is a program based on one of the examples on Harry 
Porter’s webpage that computes the product of two 8-bit numbers: 

# Multiply Program 
# M = X * Y 
 
# Move multiplicand into X 
SET M MULTIPLICAND     
LD A 
MOV X A 
 
# Move multiplier into Y 
SET M MULTIPLIER  
LD A 
MOV Y A 
 
# Multiply 
CLR M1 
MOV M2 X 
SET A -7 
MOV D A 
SET B 0 
MOV C Y 
OR A 
BNG LOOP 
MOV M2 B 
 
LOOP: 
MOV B M1 
SHL A 
MOV C A 
SET B -2 
AND A 
MOV M1 A 
MOV B M2 
NOT A 
BNG LAB1 
MOV B M1 
INC A 
MOV M1 A 
 
LAB1: 
MOV B M2 
SHL A 
MOV C A 
SET B -2 
AND A 
MOV M2 A 
MOV B Y 
SHL A 
MOV Y A 
MOV B Y 
NOT A 
BNG LAB2 
MOV B M2 
MOV C X 
ADD A 
MOV M2 A 



BNC LAB2 
MOV B M1 
INC A 
MOV M1 A 
 
LAB2: 
MOV B D 
INC D 
BNZ LOOP 
HLT 
 
MULTIPLICAND: 
BYTE 221 
 
MULTIPLIER: 
BYTE 179 

This source yields 67 bytes of machine language which I used to construct relay-based ROM. Then, 
using the patterns discussed above, I constructed a machine capable of executing the program stored in 
that ROM. See computer.tofu. Here’s a snippet from that file: 

def computer  
      ra7 ra6 ra5 ra4 ra3 ra2 ra1 ra0 
      rb7 rb6 rb5 rb4 rb3 rb2 rb1 rb0 
      rc7 rc6 rc5 rc4 rc3 rc2 rc1 rc0 
      rd7 rd6 rd5 rd4 rd3 rd2 rd1 rd0 
      m15 m14 m13 m12 m11 m10 m9 m8 m7 m6 m5 m4 m3 m2 m1 m0 
      xy15 xy14 xy13 xy12 xy11 xy10 xy9 xy8 xy7 xy6 xy5 xy4 xy3 xy2 xy1 xy0 : 
 
# . . . 
 
run 41000 10 computer 
    ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

The probed outputs are four 8-bit registers (A, B, C and D) followed by two 16-bit registers (M and 
XY). Here’s what happens when you run it: 

$ ./tofu < computer.tofu 
Build complete: 1657 components, 2586 nodes. 
1: 0000000000000000000000000000000000000000000000000000000000000000 
256: 0000000000000000000000000000000000000000010000010000000000000000 
456: 1101110100000000000000000000000000000000010000010000000000000000 
616: 1101110100000000000000000000000000000000010000011101110100000000 
 
. . . 
 
40654: 1001101010011001110111011111111100000000100001111101110111011001 
40656: 1001101010011001110111011111111110011010100001111101110111011001 
40814: 1001101000000000110111011111111110011010100001111101110111011001 
40816: 1001101011111111110111011111111110011010100001111101110111011001 
40974: 1001101011111111110111010000000010011010100001111101110111011001 

Here’s the final output line broken up by register:



 A = 10011010 (154) 
 B = 11111111 (255) 
 C = 11011101 (221) 
 D = 00000000 (0) 
 M = 1001101010000111 (39559) 
XY = 1101110111011001 (56793) 

The M register holds the product. 221 × 179 = 39559 

If Harry Porter’s computer required only 415 relays, then why does this simulation of it use 1,657 
relays? Harry Porter used four-pole relays, which means he used the equivalent of somewhere between 
415 and 1,660 single-pole relays, the type used by Tofu. Also, Harry Porter used a modern memory chip 
as system memory. This simulation uses relay-based ROM, which required several hundred relays. 

Final Ramblings 
The Tofu Circuit Simulator source code is formatted to resemble a water wave. Consider water flowing 
through a tube as analogous to electricity flowing through a wire. It should be possible to construct a 
fluid relay using a 3-way value. 

 

The valve contains an L-shaped pipe that connects 2 of the 3 valve terminals. To alter the flow, the valve 
is rotated by 90 degrees. However, in both orientations the L-shaped pipe connects to a common 
terminal. That common terminal acts like the lever in an electromechanical relay, where the other 2 
terminals are analogous to the normally-connected and normally-disconnected terminals. The 3-way 
value acts as a pivot for a rod. The movement of the rod is constrained by 2 pegs that prevent it from 
swinging more than 90 degrees. A weight on one end holds the rod in its relaxed position against the 
upper peg. A bucket hangs from the oppose end of the rod. A faucet above bucket can fill it, eventually 
overcoming the force exerted by the weight. The faucet acts similar to the coil terminal in a relay. Soon 



after water starts flowing from it, the valve changes states. As water continues to flow, the bucket simply 
overflows. The bucket contains a small hole. If the faucet stops supplying water to the bucket, the bucket
will quickly drain out and return the fluid relay to its relaxed position. 

The fluid relay exhibits the same logical properties as an electromechanical relay. With a few hundred 
fluid relays, it’s theoretically possible to construct a simple CPU. Imagine a CPU fountain. The fluid 
relays would be rigged up in a lattice over a pool, collecting the overflow. Water could be supplied by a 
large tank over the fountain with gravity driving the whole thing. A pump would draw water from the 
pool and return it to the tank. A separate pumping mechanism could act as the clock. 

It may take up a lot of space, but the technology could potentially make advanced mechanical 
computation possible, as if we really need that anyway. Konrad Zuse’s first experimental computer, the 
Z1, was actually a fully mechanical computer which was constructed and was semi-reliable. So, a 
working CPU fountain wouldn’t be a technological first. Nonetheless, it certainly would be fascinating 
to watch. It would be modern art. 


